home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
CU Amiga Super CD-ROM 15
/
CU Amiga Magazine's Super CD-ROM 15 (1997)(EMAP Images)(GB)[!][issue 1997-10].iso
/
CUCD
/
Graphics
/
Ghostscript
/
source
/
zmath.c
< prev
next >
Wrap
C/C++ Source or Header
|
1997-05-06
|
6KB
|
252 lines
/* Copyright (C) 1989, 1992, 1993, 1997 Aladdin Enterprises. All rights reserved.
This file is part of Aladdin Ghostscript.
Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author
or distributor accepts any responsibility for the consequences of using it,
or for whether it serves any particular purpose or works at all, unless he
or she says so in writing. Refer to the Aladdin Ghostscript Free Public
License (the "License") for full details.
Every copy of Aladdin Ghostscript must include a copy of the License,
normally in a plain ASCII text file named PUBLIC. The License grants you
the right to copy, modify and redistribute Aladdin Ghostscript, but only
under certain conditions described in the License. Among other things, the
License requires that the copyright notice and this notice be preserved on
all copies.
*/
/* zmath.c */
/* Mathematical operators */
#include "math_.h"
#include "ghost.h"
#include "gxfarith.h"
#include "errors.h"
#include "oper.h"
#include "store.h"
/*
* Define the current state of random number generator. We have to
* implement this ourselves because the Unix rand doesn't provide anything
* equivalent to rrand. Note that the value always lies in the range
* [0..0x7ffffffe], even if longs are longer than 32 bits.
*
* The state must be public so that context switching can save and
* restore it. (Even though the Red Book doesn't mention this,
* we verified with Adobe that this is the case.)
*/
long zrand_state;
/* Initialize the random number generator. */
void
zrand_state_init(long *pstate)
{ *pstate = 1;
}
private void
zmath_init(void)
{ zrand_state_init(&zrand_state);
}
/****** NOTE: none of these operators currently ******/
/****** check for floating over- or underflow. ******/
/* <num> sqrt <real> */
private int
zsqrt(register os_ptr op)
{ float num;
int code = num_params(op, 1, &num);
if ( code < 0 )
return code;
if ( num < 0.0 )
return_error(e_rangecheck);
make_real(op, sqrt(num));
return 0;
}
/* <num> arccos <real> */
private int
zarccos(register os_ptr op)
{ float num, result;
int code = num_params(op, 1, &num);
if ( code < 0 )
return code;
result = acos(num) * radians_to_degrees;
make_real(op, result);
return 0;
}
/* <num> arcsin <real> */
private int
zarcsin(register os_ptr op)
{ float num, result;
int code = num_params(op, 1, &num);
if ( code < 0 )
return code;
result = asin(num) * radians_to_degrees;
make_real(op, result);
return 0;
}
/* <num> <denom> atan <real> */
private int
zatan(register os_ptr op)
{ float args[2];
float result;
int code = num_params(op, 2, args);
if ( code < 0 ) return code;
if ( args[0] == 0 ) /* on X-axis, special case */
{ if ( args[1] == 0 )
return_error(e_undefinedresult);
result = (args[1] < 0 ? 180 : 0);
}
else
{ result = atan2(args[0], args[1]) * radians_to_degrees;
if ( result < 0 )
result += 360;
}
make_real(op - 1, result);
pop(1);
return 0;
}
/* <num> cos <real> */
private int
zcos(register os_ptr op)
{ float angle;
int code = num_params(op, 1, &angle);
if ( code < 0 )
return code;
make_real(op, gs_cos_degrees(angle));
return 0;
}
/* <num> sin <real> */
private int
zsin(register os_ptr op)
{ float angle;
int code = num_params(op, 1, &angle);
if ( code < 0 )
return code;
make_real(op, gs_sin_degrees(angle));
return 0;
}
/* <base> <exponent> exp <real> */
private int
zexp(register os_ptr op)
{ float args[2];
float result;
double ipart;
int code = num_params(op, 2, args);
if ( code < 0 ) return code;
if ( args[0] == 0.0 && args[1] == 0.0 )
return_error(e_undefinedresult);
if ( args[0] < 0.0 && modf(args[1], &ipart) != 0.0 )
return_error(e_undefinedresult);
result = pow(args[0], args[1]);
make_real(op - 1, result);
pop(1);
return 0;
}
/* <posnum> ln <real> */
private int
zln(register os_ptr op)
{ float num;
int code = num_params(op, 1, &num);
if ( code < 0 )
return code;
if ( num <= 0.0 )
return_error(e_rangecheck);
make_real(op, log(num));
return 0;
}
/* <posnum> log <real> */
private int
zlog(register os_ptr op)
{ float num;
int code = num_params(op, 1, &num);
if ( code < 0 )
return code;
if ( num <= 0.0 )
return_error(e_rangecheck);
make_real(op, log10(num));
return 0;
}
/* - rand <int> */
private int
zrand(register os_ptr op)
{ /*
* We use an algorithm from CACM 31 no. 10, pp. 1192-1201,
* October 1988. According to a posting by Ed Taft on
* comp.lang.postscript, Level 2 (Adobe) PostScript interpreters
* use this algorithm too:
* x[n+1] = (16807 * x[n]) mod (2^31 - 1)
*/
#define A 16807
#define M 0x7fffffff
#define Q 127773 /* M / A */
#define R 2836 /* M % A */
zrand_state = A * (zrand_state % Q) - R * (zrand_state / Q);
/* Note that zrand_state cannot be 0 here. */
if ( zrand_state <= 0 )
zrand_state += M;
#undef A
#undef M
#undef Q
#undef R
push(1);
make_int(op, zrand_state);
return 0;
}
/* <int> srand - */
private int
zsrand(register os_ptr op)
{ long state;
check_type(*op, t_integer);
state = op->value.intval;
#if arch_sizeof_long > 4
/* Trim the state back to 32 bits. */
state = (int)state;
#endif
/*
* The following somewhat bizarre adjustments are according to
* public information from Adobe describing their implementation.
*/
if ( state < 1 )
state = -(state % 0x7ffffffe) + 1;
else if ( state > 0x7ffffffe )
state = 0x7ffffffe;
zrand_state = state;
pop(1);
return 0;
}
/* - rrand <int> */
private int
zrrand(register os_ptr op)
{ push(1);
make_int(op, zrand_state);
return 0;
}
/* ------ Initialization procedure ------ */
BEGIN_OP_DEFS(zmath_op_defs) {
{"1arccos", zarccos}, /* extension */
{"1arcsin", zarcsin}, /* extension */
{"2atan", zatan},
{"1cos", zcos},
{"2exp", zexp},
{"1ln", zln},
{"1log", zlog},
{"0rand", zrand},
{"0rrand", zrrand},
{"1sin", zsin},
{"1sqrt", zsqrt},
{"1srand", zsrand},
END_OP_DEFS(zmath_init) }